Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 371
Filtrar
1.
Epilepsia Open ; 9(2): 665-678, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38321819

RESUMO

OBJECTIVE: The goal of this research was to evaluate the effect of DM type 2 (DM2) on SE severity, neurodegeneration, and brain oxidative stress (OS) secondary to seizures. METHODS: DM2 was induced in postnatal day (P) 3 male rat pups by injecting streptozocin (STZ) 100 mg/kg; control rats were injected with citrate buffer as vehicle. At P90, SE was induced by the lithium-pilocarpine administration and seizure latency, frequency, and severity were evaluated. Neurodegeneration was assessed 24 h after SE by Fluoro-Jade B (F-JB) staining, whereas OS was estimated by measuring lipid peroxidation and reactive oxygen species (ROS). RESULTS: DM2 rats showed an increase in latency to the first generalized seizure and SE onset, had a higher number and a longer duration of seizures, and displayed a larger neurodegeneration in the hippocampus (CA3, CA1, dentate gyrus, and hilus), the piriform cortex, the dorsomedial nucleus of the thalamus and the cortical amygdala. Our results also show that only SE, neither DM2 nor the combination of DM2 with SE, caused the increase in ROS and brain lipid peroxidation. SIGNIFICANCE: DM2 causes higher seizure severity and neurodegeneration but did not exacerbate SE-induced OS under these conditions. PLAIN LANGUAGE SUMMARY: Our research performed in animal models suggests that type 2 diabetes mellitus (DM2) may be a risk factor for causing higher seizure severity and seizure-induced neuron cell death. However, even when long-term seizures promote an imbalance between brain pro-oxidants and antioxidants, DM2 does not exacerbate that disproportion.


Assuntos
Diabetes Mellitus Tipo 2 , Estado Epiléptico , Ratos , Animais , Masculino , Diabetes Mellitus Tipo 2/complicações , Espécies Reativas de Oxigênio/efeitos adversos , Pilocarpina/efeitos adversos , Convulsões , Estado Epiléptico/induzido quimicamente , Estresse Oxidativo
2.
Sci Rep ; 14(1): 4835, 2024 02 28.
Artigo em Inglês | MEDLINE | ID: mdl-38418461

RESUMO

An increasing number of studies have focused on the role of NEDD4-2 in regulating neuronal excitability and the mechanism of epilepsy. However, the exact mechanism has not yet been elucidated. Here, we explored the roles of NEDD4-2 and the CLC-2 channel in regulating neuronal excitability and mesial temporal lobe epilepsy (MTLE) pathogenesis. First, chronic MTLE models were induced by lithium-pilocarpine in developmental rats. Coimmunoprecipitation analysis revealed that the interaction between CLC-2 and NEDD4-2. Western blot analyses indicated that NEDD4-2 expression was downregulated, while phosphorylated (P-) NEDD4-2 and CLC-2 expression was upregulated in adult MTLE rats. Then, the primary hippocampal neuronal cells were isolated and cultured, and the NEDD4-2 was knocked down by shRNA vector, resulting in decreased protein levels of CLC-2. While CLC-2 absence caused increased NEDD4-2 in cells. Next, in an epileptic cell model induced by a Mg2+-free culture, whole-cell current-clamp recording demonstrated that NEDD4-2 deficiency inhibited the spontaneous action potentials of cells, and CLC-2 absence caused more significant decrease in the spontaneous action potentials of cells. In conclusion, we herein revealed that NEDD4-2 regulates the expression of CLC-2, which is involved in neuronal excitability, and participates in the pathogenesis of MTLE.


Assuntos
Epilepsia do Lobo Temporal , Epilepsia , Animais , Ratos , Canais de Cloro CLC-2 , Modelos Animais de Doenças , Epilepsia/metabolismo , Epilepsia do Lobo Temporal/metabolismo , Hipocampo/metabolismo , Pilocarpina/efeitos adversos
3.
Int J Mol Sci ; 25(3)2024 Jan 30.
Artigo em Inglês | MEDLINE | ID: mdl-38338969

RESUMO

In humans and animal models, temporal lobe epilepsy (TLE) is associated with reorganization of hippocampal neuronal networks, gliosis, neuroinflammation, and loss of integrity of the blood-brain barrier (BBB). More than 30% of epilepsies remain intractable, and characterization of the molecular mechanisms involved in BBB dysfunction is essential to the identification of new therapeutic strategies. In this work, we induced status epilepticus in rats through injection of the proconvulsant drug pilocarpine, which leads to TLE. Using RT-qPCR, double immunohistochemistry, and confocal imaging, we studied the regulation of reactive glia and vascular markers at different time points of epileptogenesis (latent phase-3, 7, and 14 days; chronic phase-1 and 3 months). In the hippocampus, increased expression of mRNA encoding the glial proteins GFAP and Iba1 confirmed neuroinflammatory status. We report for the first time the concomitant induction of the specific proteins CD31, PDGFRß, and ColIV-which peak at the same time points as inflammation-in the endothelial cells, pericytes, and basement membrane of the BBB. The altered expression of these proteins occurs early in TLE, during the latent phase, suggesting that they could be associated with the early rupture and pathogenicity of the BBB that will contribute to the chronic phase of epilepsy.


Assuntos
Barreira Hematoencefálica , Epilepsia do Lobo Temporal , Epilepsia , Receptor beta de Fator de Crescimento Derivado de Plaquetas , Estado Epiléptico , Animais , Humanos , Ratos , Barreira Hematoencefálica/metabolismo , Colágeno/metabolismo , Modelos Animais de Doenças , Células Endoteliais/metabolismo , Epilepsia/metabolismo , Epilepsia do Lobo Temporal/induzido quimicamente , Epilepsia do Lobo Temporal/metabolismo , Hipocampo/metabolismo , Neuroglia/metabolismo , Pericitos/metabolismo , Pilocarpina/efeitos adversos , Ratos Sprague-Dawley , Estado Epiléptico/metabolismo , Molécula-1 de Adesão Celular Endotelial a Plaquetas/genética , Molécula-1 de Adesão Celular Endotelial a Plaquetas/metabolismo , Receptores do Fator de Crescimento Derivado de Plaquetas/genética , Receptores do Fator de Crescimento Derivado de Plaquetas/metabolismo , Receptor beta de Fator de Crescimento Derivado de Plaquetas/genética , Receptor beta de Fator de Crescimento Derivado de Plaquetas/metabolismo
4.
Clin Ther ; 46(2): 104-113, 2024 02.
Artigo em Inglês | MEDLINE | ID: mdl-38216351

RESUMO

PURPOSE: This study was undertaken to evaluate the safety and efficacy of CSF-1 (0.4% pilocarpine hydrochloride ophthalmic solution) for use in individuals with presbyopia. METHODS: Two Phase 3 multicenter, randomized, double-masked, vehicle-controlled, parallel-group clinical trials were conducted in 35 private ophthalmology clinics in the United States from October 2020 to February 2022. Key inclusion criteria were the following: (1) age 45-64 years, (2) distance-corrected near visual acuity (DCNVA) at 40 cm ≥0.40 and ≤0.90 logarithm of the minimum angle of resolution (logMAR, approximately 20/50-20/160 Snellen) in at least 1 eye, (3) manifest refraction (MR) between -4.50 and +2.00 diopter (D) sphere in each eye with ≤2.00D difference between eyes, (4) <2.00D of cylinder MR in each eye, (5) ≤0.04 logMAR (20/20-2 or better) corrected distance visual acuity (CDVA) at 4 m in each eye. Key exclusion criteria were the following: (1) >0.14 logMAR (7 letters) improvement in post-vehicle treatment in monocular DCNVA in either eye at visit 1, (2) introcular pressure (IOP) <9 or >22 mm Hg, (3) average dark-adapted pupillometry <3.5 mm in either eye, (4) prior refractive surgery or intraocular lens (IOL) implantation. Participants applied CSF-1 or vehicle twice per day for 2 weeks. Efficacy and safety assessments were performed at several times on days 1, 8, and 15. Response was defined as ≥3-line gain in DCNVA without loss of ≥1-line in CDVA in the study eye under mesopic room lighting conditions. The primary efficacy endpoint was measured 1 hour post-dose 1 on day 8. Key secondary endpoints were 2 hours post-dose 1, and 1 and 2 hours post-dose 2, also on day 8. Safety endpoints were ocular and non-ocular treatment-related adverse events (TRAE), conjunctival redness, drop comfort, slit-lamp biomicroscopy, intraocular pressure, indirect fundoscopy, and CDVA at 4 m. FINDINGS: Six hundred thirteen participants were randomized to CSF-1 (n = 309) or vehicle (n = 304). Participants were predominantly White (80.8%) and female (62.0%), with mean age (standard deviation) of 54.7 (4.8). CSF-1 met the primary and key secondary endpoints. At the primary endpoint, 40.1% of the CSF-1 group achieved response versus 19.1% of the vehicle group (P < 0.0001). The percentage of responders was significantly greater in CSF-1 compared with vehicle at all tested times. Changes from baseline in all safety endpoints were comparable between groups. Most adverse events (AEs) were mild and transient. Neither serious nor severe AEs were reported with CSF-1. IMPLICATIONS: CSF-1, a low-dose pilocarpine ophthalmic solution, demonstrated superiority to vehicle in improving near vision in individuals with presbyopia without compromising distance vision. CSF-1 demonstrated a favorable safety profile. CLINICALTRIALS: gov identifier: NCT04599933 (NEAR-1), NCT04599972 (NEAR-2).


Assuntos
Lentes Intraoculares , Presbiopia , Feminino , Humanos , Pessoa de Meia-Idade , Implante de Lente Intraocular/efeitos adversos , Implante de Lente Intraocular/métodos , Fator Estimulador de Colônias de Macrófagos , Soluções Oftálmicas/efeitos adversos , Pilocarpina/efeitos adversos , Presbiopia/tratamento farmacológico , Presbiopia/complicações
5.
Int J Med Sci ; 21(3): 492-495, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38250604

RESUMO

Purpose: Our aim was to evaluate the effect of prophylactic pilocarpine on acute salivary symptoms after radioactive iodine (RAI) therapy in patients with differentiated thyroid cancer. Methods: We enrolled 88 patients (76 women and 12 men; mean age: 47 years; range: 20-74 years) with differentiated thyroid cancer who received RAI. Patients were divided into pilocarpine (51 patients) and control (37 patients) groups. Pilocarpine was given orally, at a dose of 5 mg three times a day, from 2 days before and 12 days after RAI therapy. Symptoms and signs of acute sialadenitis within 3 months of RAI therapy were recorded. Results: During the 3 months after RAI therapy, 13 of the 88 patients (14.7%) developed acute symptomatic sialadenitis (swelling or pain of salivary glands). Acute salivary symptoms were reported by 4 (7.8%) and 9 (24.3%) patients in the pilocarpine and control groups, respectively. Acute salivary symptoms were less frequent in the pilocarpine than control group (p = 0.04), but did not differ by age, sex, or RAI dose (p = 0.3357, p = 0.428, and p = 0.2792). Conclusions: Pilocarpine reduced the likelihood of acute sialadenitis after RAI therapy in patients with differentiated thyroid cancer.


Assuntos
Adenocarcinoma , Sialadenite , Neoplasias da Glândula Tireoide , Masculino , Humanos , Feminino , Pessoa de Meia-Idade , Neoplasias da Glândula Tireoide/tratamento farmacológico , Neoplasias da Glândula Tireoide/radioterapia , Radioisótopos do Iodo/efeitos adversos , Pilocarpina/efeitos adversos , Sialadenite/etiologia , Sialadenite/prevenção & controle , Doença Aguda
6.
Brain Res Bull ; 207: 110869, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38184151

RESUMO

In temporal lobe epilepsy (TLE), the epileptogenic zones, such as the temporal lobe structure, could generate pathological high-frequency oscillations (pHFOs, 250-500 Hz) before the ictal period. These pHFOs have also been observed during the process of seizures in both TLE patients and animals, exhibiting a critical role as promising biomarkers for TLE seizures. TLE seizures could be modulated via regulating the neural excitability in epileptogenic zones, for that TLE is primarily associated with the excitation-inhibition imbalance. However, whether these kinds of modulations could also impact the pHFOs characteristics during TLE seizures is still unclear. For this purpose, we pharmaco-genetically inhibited the principal cells (PCs) in the mouse CA3 region and tracked the difference in the behavioral and electrophysiological features during LiCl-pilocarpine-induced TLE seizure between the hM4Di+CNO (experimental) mice and mCherry+CNO (control) mice. Delayed latency, decreased averaged duration, and reduced counts of the generalized seizure were observed in the experimental mice. Besides, the electrophysiological characteristics, such as the firing rate of PCs and the count of pHFO, exhibited significant decline in the CA3 and CA1 regions. During TLE seizure, there existed strong phase-coupling between pHFO and PCs spike timing in the control mice, while it was abolished in the experimental mice. In addition, we also found that the counts of pHFO were significantly associated with the behavioral features, indicating the close relationships within them. Collectively, our findings suggested that alterations in pHFO and the retardation of seizures may be attributed to disruptions in neuronal excitability, and the variations of electrophysiological features were related to seizure severity during TLE seizures. These results provide valuable insights into the role of pHFOs in TLE and shed light on the underlying mechanisms involved.


Assuntos
Epilepsia do Lobo Temporal , Humanos , Camundongos , Animais , Epilepsia do Lobo Temporal/patologia , Convulsões , Lobo Temporal/patologia , Pilocarpina/efeitos adversos , Eletroencefalografia/métodos
7.
Acta Pharmacol Sin ; 45(3): 465-479, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38017298

RESUMO

Epilepsy is a prevalent and severe neurological disorder and approximately 30% of patients are resistant to existing medications. It is of utmost importance to develop alternative therapies to treat epilepsy. Schisandrin B (SchB) is a major bioactive constituent of Schisandra chinensis (Turcz.) Baill and has multiple neuroprotective effects, sedative and hypnotic activities. In this study, we investigated the antiseizure effect of SchB in various mouse models of seizure and explored the underlying mechanisms. Pentylenetetrazole (PTZ), strychnine (STR), and pilocarpine-induced mouse seizure models were established. We showed that injection of SchB (10, 30, 60 mg/kg, i.p.) dose-dependently delayed the onset of generalized tonic-clonic seizures (GTCS), reduced the incidence of GTCS and mortality in PTZ and STR models. Meanwhile, injection of SchB (30 mg/kg, i.p.) exhibited therapeutic potential in pilocarpine-induced status epilepticus model, which was considered as a drug-resistant model. In whole-cell recording from CHO/HEK-239 cells stably expressing recombinant human GABAA receptors (GABAARs) and glycine receptors (GlyRs) and cultured hippocampal neurons, co-application of SchB dose-dependently enhanced GABA or glycine-induced current with EC50 values at around 5 µM, and application of SchB (10 µM) alone did not activate the channels in the absence of GABA or glycine. Furthermore, SchB (10 µM) eliminated both PTZ-induced inhibition on GABA-induced current (IGABA) and strychnine (STR)-induced inhibition on glycine-induced current (Iglycine). Moreover, SchB (10 µM) efficiently rescued the impaired GABAARs associated with genetic epilepsies. In addition, the homologous mutants in both GlyRs-α1(S267Q) and GABAARs-α1(S297Q)ß2(N289S)γ2L receptors by site-directed mutagenesis tests abolished SchB-induced potentiation of IGABA and Iglycine. In conclusion, we have identified SchB as a natural positive allosteric modulator of GABAARs and GlyRs, supporting its potential as alternative therapies for epilepsy.


Assuntos
Epilepsia , Lignanas , Compostos Policíclicos , Receptores de Glicina , Camundongos , Animais , Humanos , Pilocarpina/efeitos adversos , Estricnina/farmacologia , Estricnina/uso terapêutico , Convulsões/induzido quimicamente , Convulsões/tratamento farmacológico , Receptores de GABA-A , Glicina/farmacologia , Hipnóticos e Sedativos , Ácido gama-Aminobutírico , Ciclo-Octanos
8.
Retin Cases Brief Rep ; 18(1): 98-100, 2024 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-35963010

RESUMO

BACKGROUND/PURPOSE: Retinal detachment has previously been reported in association with topical miotic use for the treatment of glaucoma. Pilocarpine hydrochloride 1.25% was recently approved by the Food and Drug Administration for the treatment of presbyopia, with no reports of associated retinal detachments in the clinical trial data. METHODS: Case report. RESULTS: Two novel cases of unilateral retinal detachment occurring within 10 days of the initiation of pilocarpine 1.25% for the treatment of presbyopia were described. The patients were pseudophakic men in their 60s or 70s with preexisting retinal detachment risk factors, such as high myopia, lattice degeneration, and prior retinal detachment. Both affected eyes were treated with pars plana vitrectomy and gas endotamponade with an uncomplicated postoperative course. CONCLUSION: Retinal detachment may be associated with the use of pilocarpine 1.25%. Caution should be used when considering prescribing this medication in patients with preexisting retinal abnormality.


Assuntos
Presbiopia , Descolamento Retiniano , Masculino , Humanos , Descolamento Retiniano/induzido quimicamente , Descolamento Retiniano/cirurgia , Pilocarpina/efeitos adversos , Presbiopia/complicações , Presbiopia/cirurgia , Acuidade Visual , Vitrectomia/efeitos adversos , Soluções Oftálmicas , Resultado do Tratamento , Estudos Retrospectivos
9.
Neurologia (Engl Ed) ; 39(1): 1-9, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38161069

RESUMO

INTRODUCTION: The growth hormone (GH) has been reported as a crucial neuronal survival factor in the hippocampus against insults of diverse nature. Status epilepticus (SE) is a prolonged seizure that produces extensive neuronal cell death. The goal of this study was to evaluate the effect of intracerebroventricular administration of GH on seizure severity and SE-induced hippocampal neurodegeneration. METHODOLOGY: Adult male rats were implanted with a guide cannula in the left ventricle and different amounts of GH (70, 120 or 220ng/3µl) were microinjected for 5 days; artificial cerebrospinal fluid was used as the vehicle. Seizures were induced by the lithium-pilocarpine model (3mEq/kg LiCl and 30mg/kg pilocarpine hydrochloride) one day after the last GH administration. Neuronal injury was assessed by Fluoro-Jade B (F-JB) staining. RESULTS: Rats injected with 120ng of GH did not had SE after 30mg/kg pilocarpine, they required a higher number of pilocarpine injections to develop SE than the rats pretreated with the vehicle, 70ng or 220ng GH. Prefrontal and parietal cortex EEG recordings confirmed that latency to generalized seizures and SE was also significantly higher in the 120ng group when compared with all the experimental groups. FJ-B positive cells were detected in the hippocampus after SE in all rats, and no significant differences in the number of F-JB cells in the CA1 area and the hilus was observed between experimental groups. CONCLUSION: Our results indicate that, although GH has an anticonvulsive effect in the lithium-pilocarpine model of SE, it does not exert hippocampal neuroprotection after SE.


Assuntos
Anticonvulsivantes , Hormônio do Crescimento , Fármacos Neuroprotetores , Estado Epiléptico , Animais , Masculino , Ratos , Anticonvulsivantes/farmacologia , Hormônio do Crescimento/farmacologia , Lítio/efeitos adversos , Fármacos Neuroprotetores/farmacologia , Pilocarpina/efeitos adversos , Convulsões/tratamento farmacológico , Estado Epiléptico/tratamento farmacológico , Estado Epiléptico/induzido quimicamente
10.
Int J Mol Sci ; 24(20)2023 Oct 20.
Artigo em Inglês | MEDLINE | ID: mdl-37895080

RESUMO

Temporal lobe epilepsy is a common, chronic disorder with spontaneous seizures that is often refractory to drug therapy. A potential cause of temporal lobe epilepsy is primary brain injury, making prevention of epileptogenesis after the initial event an optimal method of treatment. Despite this, no preventive therapy for epilepsy is currently available. The purpose of this study was to evaluate the effects of anakinra, lamotrigine, and their combination on epileptogenesis using the rat lithium-pilocarpine model of temporal lobe epilepsy. The study showed that there was no significant difference in the number and duration of seizures between treated and untreated animals. However, the severity of seizures was significantly reduced after treatment. Anakinra and lamotrigine, alone or in combination, significantly reduced neuronal loss in the CA1 hippocampus compared to the control group. However, the drugs administered alone were found to be more effective in preventing neuron loss in the hippocampal CA3 field compared to combination treatment. The treatment alleviated the impairments in activity level, exploratory behavior, and anxiety but had a relatively weak effect on TLE-induced impairments in social behavior and memory. The efficacy of the combination treatment did not differ from that of anakinra and lamotrigine monotherapy. These findings suggest that anakinra and lamotrigine, either alone or in combination, may be clinically useful in preventing the development of histopathological and behavioral abnormalities associated with epilepsy.


Assuntos
Epilepsia do Lobo Temporal , Ratos , Animais , Epilepsia do Lobo Temporal/induzido quimicamente , Epilepsia do Lobo Temporal/tratamento farmacológico , Epilepsia do Lobo Temporal/patologia , Pilocarpina/efeitos adversos , Lamotrigina/efeitos adversos , Lítio/efeitos adversos , Proteína Antagonista do Receptor de Interleucina 1/farmacologia , Anticonvulsivantes/efeitos adversos , Convulsões/tratamento farmacológico , Hipocampo , Modelos Animais de Doenças
11.
J Cancer Res Ther ; 19(3): 788-792, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37470612

RESUMO

Context: Patients with head-and-neck cancers can develop salivary gland hypofunction after radiotherapy. Oral pilocarpine has been shown to be effective treatment for radiation-induced xerostomia, although its usefulness is being discussed. Aims: We aimed to evaluate the efficacy and safety profile of oral pilocarpine in radiation-induced xerostomia. Materials and Methods: Sixty patients with oropharyngeal carcinoma were planned for radiotherapy and divided into two arms randomly: Arm A (30 patients) received oral pilocarpine and Arm B (30 patients) received placebo tablets for 12 weeks after 3 months of completion of radiotherapy. Salivary gland scintigraphy and xerostomia questionnaire (XQ) were obtained from each patient at baseline and at 3 and 6 months of completion of radiotherapy. Results: There was a marked decrease in uptake ratio (UR) and excretion fraction (EF) after 3 months of completion of radiotherapy. There was a statistically significant difference between both the arms in relation to UR, but no significant difference was observed between the two arms in relation to EF after 6 months of completion of radiotherapy. A statistically significant difference was found comparing the XQ results in both the arms. The XQ results did not correlate with salivary gland dysfunction observed by means of salivary scintigraphy. Adverse effects due to xerostomia were generally mild and occasionally of moderate severity. Conclusion: The use of oral pilocarpine did not significantly improve salivary gland excretory function, despite better results on salivary uptake at 6 months. However, oral pilocarpine significantly improved symptoms of xerostomia with minor side effects that were predominantly limited to sweating.


Assuntos
Neoplasias de Cabeça e Pescoço , Lesões por Radiação , Xerostomia , Humanos , Neoplasias de Cabeça e Pescoço/radioterapia , Neoplasias de Cabeça e Pescoço/tratamento farmacológico , Pilocarpina/uso terapêutico , Pilocarpina/efeitos adversos , Lesões por Radiação/tratamento farmacológico , Lesões por Radiação/etiologia , Glândulas Salivares , Xerostomia/tratamento farmacológico , Xerostomia/etiologia
12.
Int J Mol Sci ; 24(13)2023 Jun 28.
Artigo em Inglês | MEDLINE | ID: mdl-37445950

RESUMO

One prevalent neurological disorder is epilepsy. Modulating GABAergic/glutamatergic neurotransmission, Nrf2/HO-1, PI3K/Akt, and TLR-4/NF-B pathways might be a therapeutic strategy for epilepsy. Eight-week-old BALB/c mice were administered 12.5, 25, or 50 mg/kg (-) pseudosemiglabrin orally one hour before inducing epilepsy with an i.p. injection of 360 mg/kg pilocarpine. (-) Pseudosemiglabrin dose-dependently alleviated pilocarpine-induced epilepsy, as revealed by the complete repression of pilocarpine-induced convulsions and 100% survival rate in mice. Furthermore, (-) pseudosemiglabrin significantly enhanced mice's locomotor activities, brain GABA, SLC1A2, GABARα1 levels, glutamate decarboxylase activity, and SLC1A2 and GABARα1mRNA expression while decreasing brain glutamate, SLC6A1, GRIN1 levels, GABA transaminase activity, and SLC6A1 and GRIN1 mRNA expression. These potentials can be due to the suppression of the TLR-4/NF-κB and the enhancement of the Nrf2/HO-1 and PI3K/Akt pathways, as demonstrated by the reduction in TLR-4, NF-κB, IL-1ß, TNF-α mRNA expression, MDA, NO, caspase-3, Bax levels, and Bax/Bcl-2 ratio, and the enhancement of Nrf2, HO-1, PI3K, Akt mRNA expression, GSH, Bcl-2 levels, and SOD activity. Additionally, (-) pseudosemiglabrin abrogated the pilocarpine-induced histopathological changes. Interestingly, the (-) pseudosemiglabrin intervention showed a comparable effect to the standard medication, diazepam. Therefore, (-) pseudosemiglabrin can be a promising medication for the management of epilepsy.


Assuntos
Antioxidantes , Epilepsia , Camundongos , Animais , Antioxidantes/efeitos adversos , Pilocarpina/efeitos adversos , NF-kappa B/metabolismo , Proteínas Proto-Oncogênicas c-akt/metabolismo , Proteína X Associada a bcl-2 , Fator 2 Relacionado a NF-E2/metabolismo , Fosfatidilinositol 3-Quinases/metabolismo , Receptor 4 Toll-Like/genética , Epilepsia/induzido quimicamente , Epilepsia/tratamento farmacológico , Anti-Inflamatórios/efeitos adversos , Proteínas Proto-Oncogênicas c-bcl-2/metabolismo , Transmissão Sináptica , RNA Mensageiro
13.
Int J Mol Sci ; 24(14)2023 Jul 18.
Artigo em Inglês | MEDLINE | ID: mdl-37511346

RESUMO

Although seizures are a hallmark feature of temporal lobe epilepsy (TLE), psychiatric comorbidities, including psychosis, are frequently associated with TLE and contribute to decreased quality of life. Currently, there are no defined therapeutic protocols to manage psychosis in TLE patients, as antipsychotic agents may induce epileptic seizures and are associated with severe side effects and pharmacokinetic and pharmacodynamic interactions with antiepileptic drugs. Thus, novel treatment strategies are necessary. Several lines of evidence suggest that hippocampal hyperactivity is central to the pathology of both TLE and psychosis; therefore, restoring hippocampal activity back to normal levels may be a novel therapeutic approach for treating psychosis in TLE. In rodent models, increased activity in the ventral hippocampus (vHipp) results in aberrant dopamine system function, which is thought to underlie symptoms of psychosis. Indeed, we have previously demonstrated that targeting α5-containing γ-aminobutyric acid receptors (α5GABAARs), an inhibitory receptor abundant in the hippocampus, with positive allosteric modulators (PAMs), can restore dopamine system function in rodent models displaying hippocampal hyperactivity. Thus, we posited that α5-PAMs may be beneficial in a model used to study TLE. Here, we demonstrate that pilocarpine-induced TLE is associated with increased VTA dopamine neuron activity, an effect that was completely reversed by intra-vHipp administration of GL-II-73, a selective α5-PAM. Further, pilocarpine did not alter the hippocampal α5GABAAR expression or synaptic localization that may affect the efficacy of α5-PAMs. Taken together, these results suggest augmenting α5GABAAR function as a novel therapeutic modality for the treatment of psychosis in TLE.


Assuntos
Epilepsia do Lobo Temporal , Pilocarpina , Animais , Pilocarpina/efeitos adversos , Epilepsia do Lobo Temporal/induzido quimicamente , Epilepsia do Lobo Temporal/tratamento farmacológico , Epilepsia do Lobo Temporal/metabolismo , Dopamina/metabolismo , Qualidade de Vida , Hipocampo/metabolismo , Modelos Animais de Doenças
14.
Int J Mol Sci ; 24(9)2023 May 08.
Artigo em Inglês | MEDLINE | ID: mdl-37176158

RESUMO

Epilepsy is a challenging brain disorder that is often difficult to treat with conventional therapies. The gut microbiota has been shown to play an important role in the development of neuropsychiatric disorders, including epilepsy. In this study, the effects of Bifidobacterium longum, a probiotic, on inflammation, neuronal degeneration, and behavior are evaluated in a lithium-pilocarpine model of temporal lobe epilepsy (TLE) induced in young adult rats. B. longum was administered orally at a dose of 109 CFU/rat for 30 days after pilocarpine injection. The results show that B. longum treatment has beneficial effects on the TLE-induced changes in anxiety levels, neuronal death in the amygdala, and body weight recovery. In addition, B. longum increased the expression of anti-inflammatory and neuroprotective genes, such as Il1rn and Pparg. However, the probiotic had little effect on TLE-induced astrogliosis and microgliosis and did not reduce neuronal death in the hippocampus and temporal cortex. The study suggests that B. longum may have a beneficial effect on TLE and may provide valuable insights into the role of gut bacteria in epileptogenesis. In addition, the results show that B. longum may be a promising drug for the comprehensive treatment of epilepsy.


Assuntos
Bifidobacterium longum , Epilepsia do Lobo Temporal , Epilepsia , Probióticos , Ratos , Animais , Epilepsia do Lobo Temporal/induzido quimicamente , Epilepsia do Lobo Temporal/tratamento farmacológico , Epilepsia do Lobo Temporal/metabolismo , Pilocarpina/efeitos adversos , Lítio/farmacologia , Hipocampo/metabolismo , Epilepsia/metabolismo , Probióticos/farmacologia , Modelos Animais de Doenças
15.
J Integr Neurosci ; 22(3): 75, 2023 May 16.
Artigo em Inglês | MEDLINE | ID: mdl-37258443

RESUMO

BACKGROUND: Epilepsy is one of the most common neurologic diseases, and around 30% of all epilepsies, particularly the temporal lobe epilepsy (TLE), are highly refractory to current pharmacological treatments. Abnormal synchronic neuronal activity, brain glucose metabolism alterations, neurodegeneration and neuroinflammation are features of epilepsy. Further, neuroinflammation has been shown to contribute to dysregulation of neuronal excitability and the progression of epileptogenesis. Flufenamic acid (FLU), a non-steroidal anti-inflammatory drug, is also characterized by its wide properties as a dose-dependent ion channel modulator. In this context, in vitro studies have shown that it abolishes seizure-like events in neocortical slices stimulated with a gamma-aminobutyric acid A (GABAA) receptor blocker. However, little is known about its effects in animal models. Thus, our goal was to assess the efficacy and safety of a relatively high dose of FLU in the lithium-pilocarpine rat model of status epilepticus (SE). This animal model reproduces many behavioral and neurobiological features of TLE such as short-term brain hypometabolism, severe hippocampal neurodegeneration and inflammation reflected by a marked reactive astrogliosis. METHODS: FLU (100 mg/kg, i.p.) was administered to adult male rats, 150 min before SE induced by pilocarpine. Three days after the SE, brain glucose metabolism was assessed by 2-deoxy-2-[18F]-fluoro-D-glucose ([18F]FDG) positron emission tomography (PET). Markers of hippocampal integrity, neurodegeneration and reactive astrogliosis were also evaluated. RESULTS: FLU neither prevented the occurrence of the SE nor affected brain glucose hypometabolism as assessed by [18F]FDG PET. Regarding the neurohistochemical studies, FLU neither prevented neuronal damage nor hippocampal reactive astrogliosis. On the contrary, FLU increased the mortality rate and negatively affected body weight in the rats that survived the SE. CONCLUSIONS: Our results do not support an acute anticonvulsant effect of a single dose of FLU. Besides, FLU did not show short-term neuroprotective or anti-inflammatory effects in the rat lithium-pilocarpine model of SE. Moreover, at the dose administered, FLU resulted in deleterious effects.


Assuntos
Epilepsia do Lobo Temporal , Epilepsia , Estado Epiléptico , Ratos , Masculino , Animais , Lítio/efeitos adversos , Pilocarpina/efeitos adversos , Ácido Flufenâmico/metabolismo , Ácido Flufenâmico/farmacologia , Ácido Flufenâmico/uso terapêutico , Ratos Sprague-Dawley , Fluordesoxiglucose F18/metabolismo , Fluordesoxiglucose F18/farmacologia , Fluordesoxiglucose F18/uso terapêutico , Gliose/metabolismo , Doenças Neuroinflamatórias , Estado Epiléptico/induzido quimicamente , Estado Epiléptico/tratamento farmacológico , Estado Epiléptico/metabolismo , Epilepsia/metabolismo , Epilepsia do Lobo Temporal/induzido quimicamente , Epilepsia do Lobo Temporal/diagnóstico por imagem , Epilepsia do Lobo Temporal/tratamento farmacológico , Hipocampo/metabolismo , Glucose/metabolismo , Anti-Inflamatórios/efeitos adversos , Modelos Animais de Doenças
16.
Clinics (Sao Paulo) ; 78: 100159, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36774732

RESUMO

OBJECTIVE: Amygdala has been demonstrated as one of the brain sites involved in the control of cardiorespiratory functioning. The structural and physiological alterations induced by epileptic activity are also present in the amygdala and reflect functional changes that may be directly associated with a sudden unexpected death. Seizures are always associated with neuronal damage and changes in the expression of cation-chloride cotransporters and Na/K pumps. In this study, the authors aimed to investigate if these changes are present in the amygdala after induction of status epilepticus with pilocarpine, which may be directly correlated with Sudden Unexpected Death in Epilepsy (SUDEP). METHODS: Pilocarpine-treated wistar rats 60 days after Status Epilepticus (SE) were compared with control rats. Amygdala nuclei of brain slices immunostained for NKCC1, KCC2 and α1-Na+/K+-ATPase, were quantified by optical densitometry. RESULTS: The amygdaloid complex of the animals submitted to SE had no significant difference in the NKCC1 immunoreactivity, but KCC2 immunoreactivity reduced drastically in the peri-somatic sites and in the dendritic-like processes. The α1-Na+/K+-ATPase peri-somatic immunoreactivity was intense in the rats submitted to pilocarpine SE when compared with control rats. The pilocarpine SE also promoted intense GFAP staining, specifically in the basolateral and baso-medial nuclei with astrogliosis and cellular debris deposition. INTERPRETATION: The findings revealed that SE induces lesion changes in the expression of KCC2 and α1-Na+/K+-ATPase meaning intense change in the chloride regulation in the amygdaloid complex. These changes may contribute to cardiorespiratory dysfunction leading to SUDEP.


Assuntos
Tonsila do Cerebelo , Estado Epiléptico , Morte Súbita Inesperada na Epilepsia , Animais , Ratos , Adenosina Trifosfatases/metabolismo , Tonsila do Cerebelo/patologia , Cloretos/metabolismo , Modelos Animais de Doenças , Hipocampo/metabolismo , Hipocampo/patologia , Homeostase , Pilocarpina/efeitos adversos , Ratos Wistar , Estado Epiléptico/induzido quimicamente , Estado Epiléptico/patologia , Morte Súbita Inesperada na Epilepsia/patologia , Simportadores/metabolismo
17.
Cell Mol Neurobiol ; 43(1): 367-380, 2023 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-35061107

RESUMO

The pilocarpine-induced (PILO) model has helped elucidate the electrophysiological and molecular aspects related to mesial temporal lobe epilepsy. It has been suggested that the extensive cell death and edema observed in the brains of these animals could be induced by increased inflammatory responses, such as the rapid release of the inflammatory cytokine interleukin 1 beta (Il1b). In this study, we investigate the role of endogenous Il1b in the acute phase of the PILO model. Our aim is twofold. First, we want to determine whether it is feasible to silence Il1b in the central nervous system using a non-invasive procedure. Second, we aim to investigate the effect of silencing endogenous Il1b and its antagonist, Il1rn.We used RNA interference applied non-invasively to knockdown Il1b and its endogenous antagonist Il1rn. We found that knocking down Il1b prior to pilocarpine injection increased the mortality rate of treated animals. Furthermore, we observed that, when exposing the animals to more Il1b by silencing its endogenous antagonist Il1rn, there was a better response to status epilepticus with decreased animal mortality in the acute phase of the PILO model. Thus, we show the feasibility of using a novel, less invasive approach to study genes involved in the inflammatory response in the central nervous system. Furthermore, our results provide suggestive evidence that modulating endogenous Il1b improves animal survival in the acute phase of the PILO model and may have effects that extend into the chronic phase.


Assuntos
Epilepsia do Lobo Temporal , Epilepsia , Estado Epiléptico , Animais , Pilocarpina/efeitos adversos , Pilocarpina/metabolismo , Interleucina-1beta/metabolismo , Epilepsia/induzido quimicamente , Epilepsia/genética , Epilepsia do Lobo Temporal/induzido quimicamente , Epilepsia do Lobo Temporal/genética , Epilepsia do Lobo Temporal/metabolismo , Estado Epiléptico/induzido quimicamente , Estado Epiléptico/genética , Estado Epiléptico/metabolismo , Modelos Animais de Doenças , Hipocampo/metabolismo
18.
Cell Mol Neurobiol ; 43(3): 1283-1300, 2023 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-35840809

RESUMO

The blockage of transient receptor potential vanilloid 4 (TRPV4) inhibits inflammation and reduces hippocampal neuronal injury in a pilocarpine-induced mouse model of temporal lobe epilepsy. However, the underlying mechanisms remain largely unclear. NF-κB signaling pathway is responsible for the inflammation and neuronal injury during epilepsy. Here, we explored whether TRPV4 blockage could affect the NF-κB pathway in mice with pilocarpine-induced status epilepticus (PISE). Application of a TRPV4 antagonist markedly attenuated the PISE-induced increase in hippocampal HMGB1, TLR4, phospho (p)-IκK (p-IκK), and p-IκBα protein levels, as well as those of cytoplasmic p-NF-κB p65 (p-p65) and nuclear NF-κB p65 and p50; in contrast, the application of GSK1016790A, a TRPV4 agonist, showed similar changes to PISE mice. Administration of the TLR4 antagonist TAK-242 or the NF-κB pathway inhibitor BAY 11-7082 led to a noticeable reduction in the hippocampal protein levels of cleaved IL-1ß, IL-6 and TNF, as well as those of cytoplasmic p-p65 and nuclear p65 and p50 in GSK1016790A-injected mice. Finally, administration of either TAK-242 or BAY 11-7082 greatly increased neuronal survival in hippocampal CA1 and CA2/3 regions in GSK1016790A-injected mice. Therefore, TRPV4 activation increases HMGB1 and TLR4 expression, leading to IκK and IκBα phosphorylation and, consequently, NF-κB activation and nuclear translocation. The resulting increase in pro-inflammatory cytokine production is responsible for TRPV4 activation-induced neuronal injury. We conclude that blocking TRPV4 can downregulate HMGB1/TLR4/IκK/κBα/NF-κB signaling following PISE onset, an effect that may underlie the anti-inflammatory response and neuroprotective ability of TRPV4 blockage in mice with PISE.


Assuntos
Antineoplásicos , Proteína HMGB1 , Estado Epiléptico , Camundongos , Animais , NF-kappa B/metabolismo , Inibidor de NF-kappaB alfa/metabolismo , Inibidor de NF-kappaB alfa/farmacologia , Pilocarpina/efeitos adversos , Proteína HMGB1/metabolismo , Canais de Cátion TRPV/metabolismo , Receptor 4 Toll-Like/metabolismo , Transdução de Sinais , Inflamação , Estado Epiléptico/induzido quimicamente
19.
Braz. j. biol ; 83: 1-10, 2023. ilus, graf, tab
Artigo em Inglês | LILACS, VETINDEX | ID: biblio-1469019

RESUMO

Only few studies have focus on animals that received Pilocarpine (Pilo) and did not develop behavioral status epilepticus (SE) and, whether they may become epileptic in the model's chronic phase. Previews works observed mossy fiber sprouting in the hippocampus of Non-SE (NSE) rats, while others observed spontaneous and recurrent seizures (SRS) 6 - 8 months after animals received Pilo. It is known that neuronal excitability is influenced by female hormones, as well as, the occurrence of SE in castrated and non-castrated female rats. However, it is not known whether females that received Pilo and did not show SE, may have SRS. The aim of this work was to investigate whether castrated and non-castrated female rats that did not show behavioral SE after Pilo, will develop SRS in the following one-year. For that, animals received 360 mg/kg of Pilo and were video monitored for 12 months. SE females from castrated and non-castrated groups became epileptic since the first month after drug injection. Epileptic behaviors were identified watching video monitoring recordings in the fast speed. Castrated and Non castrated NSE animals showed behaviors resembling seizures described by Racine Scale stages 1 - 3. Motor alterations showed by NSE groups could be observed only when recordings were analyzed in slow speed. In addition, behavioral manifestations as, rhythmic head movements, sudden head movements, whole body movements and immobility were also observed in both, SE and NSE groups. We concluded that NSE female rats may have become epileptic. Adding to it, slow speed analysis of motor alterations was essential for the observation of NSE findings, which suggests that possibly many motor alterations have been underestimated in epilepsy experimental research.


Poucos são os estudos com foco em animais que receberam Pilocarpina (Pilo) e não desenvolveram status epilepticus (SE) comportamental e, se os mesmos se tornarão epilépticos na fase crônica do modelo. Autores observaram o brotamento das fibras musgosas no hipocampo de ratos Não-SE (NSE), enquanto outros observaram crises espontâneas e recorrentes (CER) 6 - 8 meses após receberam a droga. A excitabilidade neuronal é influenciada pelos hormônios femininos e, da mesma forma, a ocorrência de SE em ratas castradas e não-castradas. Entretanto, não é sabido se as fêmeas que não apresentam SE terão CER. O objetivo deste trabalho foi investigar se fêmeas castradas e não castradas que não tiveram SE comportamental após a injeção de Pilo desenvolverão CER dentro de um ano. Para isto, os animais receberam 360 mg/kg de Pilo e foram videomonitorados por 12 meses. As fêmeas SE castradas e não-castradas se tornaram epilépticas desde o primeiro mês pós Pilo. O comportamento epiléptico foi identificado assistindo as gravações na velocidade rápida. As fêmeas NSE castradas e não-castradas apresentaram comportamentos similares aos estágios 1 - 3 da Escala de Racine. As alterações motoras nestes grupos (NSE) foram observadas apenas quando as videomonitoração foi analisada na velocidade lenta. Além destas, manifestações comportamentais como movimentos rítmicos da cabeça, movimentos súbitos da cabeça, movimentos de todo o corpo e imobilidade também foram observadas em ambos grupos, SE e NSE. Concluímos que as fêmeas NE podem ter se tornado epilépticas. Adicionado a isto, a análise das alterações motoras na velocidade lenta foi essencial para a observação dos achados das fêmeas NSE, o que sugere que possivelmente muitas alterações motoras têm sido subestimados na pesquisa em epilepsia experimental.


Assuntos
Feminino , Animais , Ratos , Epilepsia/induzido quimicamente , Epilepsia/veterinária , Modelos Animais , Pilocarpina/administração & dosagem , Pilocarpina/efeitos adversos , Pilocarpina/farmacologia
20.
Int J Mol Sci ; 23(21)2022 Oct 29.
Artigo em Inglês | MEDLINE | ID: mdl-36361978

RESUMO

Epilepsy is a brain disorder characterized by recurrent epileptic seizures and neurobiological, physiological, mood, and cognitive consequences. In the last decade, the beneficial effects of regular physical exercise have been investigated in patients with neurodegenerative diseases such as epilepsy. However, data on its beneficial effects and underlying mechanisms are still insufficient. The objective of the current study was to investigate the effects of endurance training, applied before and after pilocarpine (Pilo) administration, on status epilepticus (SE) severity, and its relation to epileptogenesis deleterious consequences during the chronic epileptic phase. Long-term aerobic training, applied four weeks before SE and eight weeks after SE, elevated the threshold to induce SE and reduced spontaneous motor seizures. The protective effect of this alternative approach on seizure susceptibility resulted in improved memory responses, and alleviated comorbid depression in epileptic rats. The exercised epileptic rats had improved markers of oxidative stress by decreasing lipid peroxidation and increasing the levels of glutathione and activity of superoxide dismutase in the rat hippocampus. Aerobic training managed to ameliorate the neuroinflammation by decreasing the levels of TNF-α and IL-1ß in the hippocampus. Our results suggest that regular physical training predisposes the subjects to crucial plastic changes, leading to increased resistance to SE and the development of epileptogenesis.


Assuntos
Treino Aeróbico , Epilepsia , Estado Epiléptico , Animais , Ratos , Humanos , Pilocarpina/efeitos adversos , Estado Epiléptico/induzido quimicamente , Estado Epiléptico/terapia , Convulsões , Epilepsia/induzido quimicamente , Hipocampo , Modelos Animais de Doenças
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...